47 resultados para unitary time evolution

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type of signals obtained has conditioned chaos analysis tools. Almost in every case, they have analogue characteristics. But in certain cases, a chaotic digital signal is obtained and theses signals need a different approach than conventional analogue ones. The main objective of this paper will be to present some possible approaches to the study of this signals and how information about their characteristics may be obtained in the more straightforward possible way. We have obtained digital chaotic signals from an Optical Logic Cell with some feedback between output and one of the possible control gates. This chaos has been reported in several papers and its characteristics have been employed as a possible method to secure communications and as a way to encryption. In both cases, the influence of some perturbation in the transmission medium gave problems both for the synchronization of chaotic generators at emitter and receiver and for the recovering of information data. A proposed way to analyze the presence of some perturbation is to study the noise contents of transmitted signal and to implement a way to eliminate it. In our present case, the digital signal will be converted to a multilevel one by grouping bits in packets of 8 bits and applying conventional methods of time-frequency analysis to them. The results give information about the change in signals characteristics and hence some information about the noise or perturbations present. Equivalent representations to the phase and to the Feigenbaum diagrams for digital signals are employed in this case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work summarizes the observations made on the variation and time evolution of the reflectanceanisotropy signal during the MOVPE growth of GaInPnucleation layers on Germanium substrates. This in situ monitoring tool is used to assess the impact of different nucleation routines and reactor conditions on the quality of the layers grown. This comparison is carried out by establishing a correlation between reflectanceanisotropy signature at 2.1 eV and the morphology of the epilayers evaluated by atomic force microscopy (AFM). This paper outlines the potential of reflectanceanisotropy to predict, explore, and therefore optimize, the best growth conditions that lead to a high quality III–V epilayer on a Ge substrate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hojas Kilométricas (Kilometric Sheets). Specifically, the study focuses on those sheets referring to the city centre and surrounding area of the Royal Site of Aranjuez, a town in the south of the Province of Madrid. The aim of this study is to restore the actual size and measurements of scanned images of the Hojas Kilométricas. This would allow us, among other things, to reestablish both the format and scale of the original plans. To achieve this goal it is necessary to rectify and then georeference these images, i.e. assign them a geographic reference system. This procedure is essential in the overlaying and comparison of the Hojas Kilométricas of the Royal Site with other historical cartography as well as other sources related to the same area from different time periods. Subsequent research would allow us, for example, to reconstruct the time-evolution of the urban area, to spot new construction and to pinpoint the locations of any altered or missing buildings or architectural features. In addition, this would allow us to develop and integrate databases for GIS models applicable to the management of our cultural heritage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geodetic volcano monitoring in Tenerife has mainly focused on the Las Cañadas Caldera, where a geodetic micronetwork and a levelling profile are located. A sensitivity test of this geodetic network showed that it should be extended to cover the whole island for volcano monitoring purposes. Furthermore, InSAR allowed detecting two unexpected movements that were beyond the scope of the traditional geodetic network. These two facts prompted us to design and observe a GPS network covering the whole of Tenerife that was monitored in August 2000. The results obtained were accurate to one centimetre, and confirm one of the deformations, although they were not definitive enough to confirm the second one. Furthermore, new cases of possible subsidence have been detected in areas where InSAR could not be used to measure deformation due to low coherence. A first modelling attempt has been made using a very simple model and its results seem to indicate that the deformation observed and the groundwater level variation in the island may be related. Future observations will be necessary for further validation and to study the time evolution of the displacements, carry out interpretation work using different types of data (gravity, gases, etc) and develop models that represent the island more closely. The results obtained are important because they might affect the geodetic volcano monitoring on the island, which will only be really useful if it is capable of distinguishing between displacements that might be linked to volcanic activity and those produced by other causes. One important result in this work is that a new geodetic monitoring system based on two complementary techniques, InSAR and GPS, has been set up on Tenerife island. This the first time that the whole surface of any of the volcanic Canary Islands has been covered with a single network for this purpose. This research has displayed the need for further similar studies in the Canary Islands, at least on the islands which pose a greater risk of volcanic reactivation, such as Lanzarote and La Palma, where InSAR techniques have been used already.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objeto de esta tesis doctoral es encontrar, mediante herramientas estadísticas, un modelo matemático que prediga la evolución temporal de las concentraciones de los hidrocarburos totales del petróleo (TPH) en un proceso de biorremediación de suelos contaminados con gasoleo. Obtenido el modelo matemático realizar las comparaciones pertinentes para determinar la eficiencia de distintos tratamientos, la influencia tanto del suelo como del nivel de concentración. Para cumplir este objetivo se realizó un diseño de experimentos que tomaba en cuenta dos tipos de suelos, dos niveles de concentración de hidrocarburo y seis tratamientos. Se realizaron en total 1824 ensayos en laboratorio repartidos en 8 campañas de campo durante un año de experiencia tanto en parcelas de 4 x 4 m como en microcosmos. Los resultados obtenidos muestran que el proceso de biorremediación se puede ajustar a un comportamiento exponencial, que es una ecuación de cinética de primer orden, y que las comparaciones realizadas han mostrado resultados satisfactorios de la eficiencia de algunos tratamientos. ABSTRACT The purpose of this thesis is using statistical tools find a mathematical model to predict the time evolution of the total petroleum hydrocarbons (TPH) concentrations in the bioremediation process of diesel contaminated soil. Retrieved mathematical model make relevant comparisons to determine the efficiency of different treatments and the influence of both soil and concentration levels. To achieve this goal a design of experiments was developed, it took into account two types of soil, two concentration levels of hydrocarbon and six treatments. There were a total of 1824 laboratory tests spread over 8 field campaigns during a year of experience in both plots of 4 x 4 m in microcosm. The results obtained show that the bioremediation process can be adjusted to an exponential model, it is an equation of kinetic of first order and that the comparisons have shown satisfactory results of the efficiency of some treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present, several models for quantum computation have been proposed. Adiabatic quantum computation scheme particularly offers this possibility and is based on a slow enough time evolution of the system, where no transitions take place. In this work, a new strategy for quantum computation is provided from the opposite point of view. The objective is to control the non-adiabatic transitions between some states in order to produce the desired exit states after the evolution. The model is introduced by means of an analogy between the adiabatic quantum computation and an inelastic atomic collision. By means of a simple two-state model, several quantum gates are reproduced, concluding the possibility of diabatic universal faulttolerant quantum computation. Going a step further, a new quantum diabatic computation model is glimpsed, where a carefully chosen Hamiltonian could carry out a non-adiabatic transition between the initial and the sought final state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (latent tracks). In the case of amorphous silica, SHI irradiation originates nano-tracks of higher density than the virgin material (densification). As a result, the refractive index is increased with respect to that of the surroundings. Moreover, track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate. We have recently demonstrated that SHI irradiation produces a large number of point defects, easily detectable by a number of experimental techniques (work presented in the parallel conference ICDIM). The mechanisms of energy transfer from SHI to the target material have their origin in the high electronic excitation induced in the solid. A number of phenomenological approaches have been employed to describe these mechanisms: coulomb explosion, thermal spike, non-radiative exciton decay, bond weakening. However, a detailed microscopic description is missing due to the difficulty of modeling the time evolution of the electronic excitation. In this work we have employed molecular dynamics (MD) calculations to determine whether the irradiation effects are related to the thermal phenomena described by MD (in the ps domain) or to electronic phenomena (sub-ps domain), e.g., exciton localization. We have carried out simulations of up to 100 ps with large boxes (30x30x8 nm3) using a home-modified version of MDCASK that allows us to define a central hot cylinder (ion track) from which heat flows to the surrounding cold bath (unirradiated sample). We observed that once the cylinder has cooled down, the Si and O coordination numbers are 4 and 2, respectively, as in virgin silica. On the other hand, the density of the (cold) cylinder increases with respect to that of silica and, furthermore, the silica network ring size decreases. Both effects are in agreement with the observed densification. In conclusion, purely thermal effects do not explain the generation of point defects upon irradiation, but they do account for the silica densification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that the Amundsenisen Icefield in Southern Spitzbergen (Svalbard achipelago) is temperate with an upper layer of snow and firn. It is an accumulation area and, though ice/water mass balance is clearly subject to time evolution, observation data on the long-term elevation changes over the past 40 years (Nuth et al., 2010) allow to assume constant icefield surface. Within our study of the plausibility of a subglacial lake (Glowacki et al., 2007), here, we focus on the sensitivity of the system to the thermal effect of the firn and snow layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bead models are used in dynamical simulation of tethers. These models discretize a cable using beads distributed along its length. The time evolution is obtained nu- merically. Typically the number of particles ranges between 5 and 50, depending on the required accuracy. Sometimes the simulation is extended over long periods (several years). The complex interactions between the cable and its spatial environment require to optimize the propagators —both in runtime and precisión that constitute the central core of the process. The special perturbation method treated on this article conjugates simpleness of computer implementation, speediness and precision, and is capable to propagate the orbit of whichever material particle. The paper describes the evolution of some orbital elements, which are constants in a non-perturbed problem, but which evolve in the time scale imposed by the perturbation. It can be used with any kind of orbit and it is free of sin- gularities related to small inclination and/or small eccentricity. The use of Euler parameters makes it robust.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dielectrophoretic potential generated near the surface of a z-cut LiNbO3 by photovoltaic charge transport has been calculated for first time. The procedure and results are compared with the ones corresponding to x-cut. Diferences in the position, sharpness and time evolution are reported, and their implication on particle trapping are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low-cost vibration monitoring system has been developed and installed on an urban steel- plated stress-ribbon footbridge. The system continuously measures: the acceleration (using 18 triaxial MEMS accelerometers distributed along the structure), the ambient temperature and the wind velocity and direction. Automated output-only modal parameter estimation based on the Stochastic Subspace Identification (SSI) is carried out in order to extract the modal parameters, i.e., the natural frequencies, damping ratios and modal shapes. Thus, this paper analyzes the time evolution of the modal parameters over a whole-year data monitoring. Firstly, for similar environmental/operational factors, the uncertainties associated to the time window size used are studied and quantified. Secondly, a methodology to track the vibration modes has been established since several of them with closely-spaced natural frequencies are identified. Thirdly, the modal parameters have been correlated against external factors. It has been shown that this stress-ribbon structure is highly sensitive to temperature variation (frequency changes of more than 20%) with strongly seasonal and daily trends

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estudio del tiempo en que un fenotipo alcanza un estado estacionario